Evolute - ορισμός. Τι είναι το Evolute
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Evolute - ορισμός

CENTERS OF CURVATURE OF A CURVE
Evolutes; Radial curve
  • Cycloid (blue), its osculating circle (red) and evolute (green).
  • Evolute (red) of an ellipse
  • The '''evolute''' of a [[curve]] (blue parabola) is the locus of all its centers of curvature (red).
  • The normal at point P is the tangent at the curvature center C.
  • The evolute of the large nephroid (blue) is the small nephroid (red).

Evolute         
·noun A curve from which another curve, called the involute or evolvent, is described by the end of a thread gradually wound upon the former, or unwound from it. ·see Involute. It is the locus of the centers of all the circles which are osculatory to the given curve or evolvent.
evolute         
['i:v?l(j)u:t, '?v-]
¦ noun Mathematics a curve which is the locus of the centres of curvature of another curve (its involute).
¦ adjective Zoology & Botany rolled outwards at the edges.
Origin
C18: from L. evolutus, past participle of evolvere (see evolve).

Βικιπαίδεια

Evolute

In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope of the normals to a curve.

The evolute of a curve, a surface, or more generally a submanifold, is the caustic of the normal map. Let M be a smooth, regular submanifold in Rn. For each point p in M and each vector v, based at p and normal to M, we associate the point p + v. This defines a Lagrangian map, called the normal map. The caustic of the normal map is the evolute of M.

Evolutes are closely connected to involutes: A curve is the evolute of any of its involutes.

Παραδείγματα από το σώμα κειμένου για Evolute
1. Both officials also agreed that Vietnamese Buddhism should evolute more in the country‘s new context while maintaining its slogan "Dharma, Nation and Socialism" through religious activities for the sake of the country and people.